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AIntract--Two Stokes flows which are known to lead to separation are reconsidered from a more 
dynamic perspective, and it is found that within the region of  separated flow there is an extromum 
for the pressure. A simple argument is presented which indicates that this is true under reasonable 
conditions. 

1. I N T R O D U C T I O N  

One of the interesting developments in the study of slow viscous flows, with consequences 
for all fluid mechanics, has been the recent examination of separation. Much of this work 
of the past decade has been reviewed in the articles of O'Neill & Ranger (1979), and 
Hasimoto & Sano (1980). In the early development of Stokes flows much of the interest 
centred on the drag and, where relevant, the torque produced by a particular shaped body 
in either a uniform or simple shear flow. Many sophisticated analytical techniques have 
been developed for these calculations and a good understanding of the role of the body 
shape and dimensions in influencing the drag has been gained. 

The existence of separated flows, when the Reynolds number is effectively zero, was 
first shown by Dean (1944), though only in the last few years has a catalogue of different 
separated flows been developed to give a clearer indication of  the situations under which 
separation can be anticipated. These studies have been through a more detailed exam- 
ination of the stream function. Through a combination of  analytical and numerical 
methods, invariably very lengthy, stagnation and separation points in the fluid have been 
located, and an overall plotting of the streamlines in the vicinity of  the body sketched. 
General results have not come easily though. Interest has tended to concentrate on the 
dividing streamline, where this intersects the body at the point of separation for example, 
in what can be considered as essentially a study of the kinematic aspects of the flow. This 
is natural given the historical perspective of high Reynolds number flows past bluff bodies, 
where local considerations in a boundary layer context were just about all that were 
possible. However, it can be argued that the precise position of the point of separation 
is of less consequence in a low as against a high Reynolds number flow. It is known that 
the flow solution to the Stokes equation is analytic at the point of  separation, and there 
are not the same immediate consequences for the values of the body drag once separated 
flow commences; there is a smooth transition through the states at which separation 
develops, and the expression for the drag does not appear to notice the precise onset of 
separation. 

The purpose of the present paper is to re-examine some of the problems recently, 
considered in the literature from a more dynamic perspective. Specifically, we evaluate the 
pressure for the uniform flow past two different axisymmetric geometries to note any 
effects which follow from the onset of separation. These are the flow past two spheres 
(Davis et al. 1976), and the flow past a spherical cap (Dorrepaal et  al. 1976). The major 
observation which can be made from these calculations is that within the region of 
separated flow there is an extremum for the pressure function. (Because of the reversibility 
of all Stokes flows this can be either a maximum or a minimum.) It was seen from the 
earlier discussions that in these situations the fluid does not continue to follow the contours 
of the body, but rather separates at some point on the surface. It would appear that there 

173 



174 s . H .  SMITH 

is insufficient momentum to complete the flow around the body, and the existence of the 
pressure extremum on the axis is thereby connected to the separation phenomenon. For 
Stokes flows it is well known that the pressure is a harmonic function, and potential theory 
states that the extremum for the pressure must lie on the "boundary", which implies either 
the surface of the body or the axis of symmetry in axisymmetric situations. If separation 
is not present the extrema must be on the body. In the first problem, when separation only 
occurs as the distance between the spheres diminishes, it can he shown that the onset of 
separation is marked by the occurrence of the pressure extremum at the stagnation point 
on the body along the axis. 

It would be attractive if a general argument could he developed which shows that there 
is always an extremum for the pressure when the flow past the body leads to separation. 
However, this has not proved to be possible. A restricted argument, with the requirement 
that the separation bubble satisfies a concavity condition, has been sketched in the last 
section, using a local analysis in the ndghbourhood of  the stagnation points. A general 
argument must be global in character, and this has not been attained. 

No general results of a similar nature occur for all two-dimensional flows. For example, 
in the case of a shear flow past a circular cylinder (see Smith 1979) it can be seen that in 
some cases, depending on the flow parameters, separation does lead to the existence of an 
extremum for the pressure, in others it does not. 

In a final introductory comment, Ranger (1971) showed that separation can take place 
for the axisynunetric flow past a rotating sphere when the secondary flow due to the 
rotation and the streaming velocities have equal orders of magnitude. In this situation the 
pressure for the secondary flow is not harmonic, and it can he shown that for a certain 
range of the flow constants the pressure has an extremum away from the axis of  symmetry, 
and outside the domain of  separated flow. However, it has been shown that a pressure 
extremum does exist within the separated region, though the details are not presented here. 

If ap, az represent radial and axial distances in a cylindrical co-ordinate system, where 
a is the length scale, then the Stokes equations are 

Rpp = ~=, -- Rp~ = p -'(p~)p [1.1] 

where p is the pressure, ~ the vorticity (both non-dimensional) and R is the Reynolds 
number. When ~ is the stream function, then ~ = -p -~ L _~ (~ ) ,  where 
L_~ = ( 0 2 / O p 2 ) - ( l / p ) ( O / O p ) + ( O 2 / O z 2 ) .  On eliminating the pressure, there follows the 
basic fourth order equation L~z(O)= 0; this is the equation which is solved along with 
the no slip boundary conditions on the surface of  the body to give an understanding of 
the streamlines, and to calculate the drag. 

2. PARTICULAR CASES 

(a) Two spheres. Here we follow the work of  Davis et al. (1976). The spheres of radius 
a have centres on the axis of symmetry at z = + d; the uniform stream with velocity U 
is parallel to the z-axis. The bispherical co-ordinate system 

c s in  ~/ c s i n h  
z = [ 2 . q  

P = cosh ~ - cos t/' cosh ~ - cos r/ 

is introduced so that the spheres are represented by ~ = + a, where a = c cosech ~, 
d = c coth a. Then Davis et al. showed that 

C 2 sin 2 r/ 

~b = 2(cosh ~ -- cos v/)2 
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+ (cosh ¢ - cos rl )- 3/2 ~__ l { A. cosh (n - ~ ) ¢ + C. cosh (n + ~) ~ } 

X {Pn-l (COS 17) - -  Pn+l (COS F])} [2.2] 

where 

n(n + l )  f 2 ( 1  - e - ( ~ +  l)~) + (2n + 1)(e" - 1) ~, 
A , =  - x/(2)(2n _ 1)(2n + 1) ( 2  ~nh (-~n ~ ~ + ~  ~ - D  s-inh 2~x} 

[2.3] 

C~ = x/(2)(2n + 1)(2n + 3) nh = - r - - (  + , " r t  n + l ) s i ~ S "  
[2.4] 

Now long, but straightforward calculations show that 

with 

2n(2n_ +_ 3)A -- (2n -- l)A, + 2(n + 1)C, - 
D . =  2n + 1  , ,+l~ 

2(n + 1)(2n -- 1)C,_ ' [2.6] 
2 n + l  

for n = 1, 2, 3 . . . .  ; Co = 0. Solving [1.1] for the pressure shows finally that 

RP = c2(c°sh ~ - c°st/)z/2 ~-0 E~sinh(n+~)~.P~(cosrl), [2.7] 

where E. is given in terms of  D. by the difference equation 

n ( E  n - g n _ l )  = ( 2 ? / +  1)D,, - -  (2n - 1 ) D , , _  t [2.81 

for n = 1, 2, 3 . . . .  ; D0 = 0. When we require E, to tend to zero exponentially as n --* oo, 
a unique solution is obtained for E, from (2.8) given by 

2 k + l  E~=2n + I D~ - =~+ + n +----~ k I k(-~--~) Dk' n = 0, 1, 2 . . . . .  [2.9] 

It has not been found possible to simplify [2.9] using [2.3, 4, 6], and so numerical values 
for particular = must suffice at this point. Also, the Watson transformation, which was of  
crucial help to Davis et al. in improving the numerical accuracy of  their calculations, 
cannot readily be utilised. Nevertheless, sufficient accuracy could be attained by direct 
calculations to firmly establish the position of  the pressure extremum within the separated 
r e g i o n .  

The particular value = = 1 has been taken; according to Davis et al., separation takes 
place for this value, and the separated region joins both spheres. The calculations show 
E0 -~ - 0.367650, El --- 0.184242, E2 ~ 0.144709, E3 ~- 0.032130, E4 --~ 0.005487, 
E5 -~ 0.000907, E6 ~ 0.000147, E7 ~ 0.000024, Es -~ 0.000004, Es -- 0.000001; these show a 
sufficiently rapid decay for satisfactory numerical accuracy. The lines p ffi constant are 
sketched in figure 1 in the half-space z _ 0 only; there is a fore-aft  symmetry about  z ffi 0. 
The flow is considered to be vertically down and the dotted line indicates the boundary 
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Figure 1. 

of  the separated region. Within the upper half  plane z > 0 the pressure has an absolute 
maximum at the forward stagnation point M, and an absolute minimum at the point N. 
The base pressure has been adjusted so that p is zero along z -- 0, and the curve p = 0 also 
meets the sphere at L. The local extremum for p(p,  z) is at the point S within the separated 
region; S is a saddle point for the function p. The streamline which borders  the separated 
flow is also shown. The local extremum for the pressure can be noted within the separated 

region at the point p = 0, z '~ 0.36c. 
(b) Spherical cap. In this work we follow the results of  Dorrepaal,  O'Neill & Ranger 

(1976), which have recently been verified experimentally by Collins (1979). The cap 
occupies the domain r = 1, 0 < 0 < 0t where r and 0 are spherical polar coordinates with 
z = r sin 0, p = r cos 0. The equations corresponding to [1.1] in this coordinate system are 

Rp, = (r 2 s in  0)  - l(o, - Rpo = (s in  0 )  - l ( , ,  

where 

3 2 1 3 2 cot 0 3 
L_ l  =~r 2"t r2302 r 2 30" 
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Now Dorrepaal et al. showed for r < 1 that 

1 2 2 -  = ~ r  sin 0 -  ~ A.O)r"+'{P._,(cosO)- P.+1(cosO} 

® 1 
q-( r  2 -  1)~l{-~(n + 1)A,°)-A,(e)}r"+l{P.- l(cosO)-P,+l(cosO)},  

where 

1 ~sin (n -- 1)~t sin (n +2)ct)  ~/(2)C / 7 t  A"0~=3-'n~ [ n = i  n + 2  f + 2 - - n - - ~ c ° s ~  n +  ~t 

1 
l j, 

[2.10] 

(1) 1 ~sin(_n--1)~t s i n ( n + 2 ) 0 t ~ +  x/ (2)Bco s n + ~  

3~/(2)D cos n + at cos n 

"~ 8 [ ~ n + 3  + 2n 

with B '=  (x/(2)s/24nX9 + 2s2), C = (x/(2)s/6n)(3 + 2s2), D = (3x/2/2x)s, when 
s = sin (g/2); a similar formula follows for r > 1. Working through the calculations as 
before now shows 

[2.11] 

for r < 1 to complete the solution in this domain. When the equivalent expression is gained 
for r > 1, care must be taken in adding the correct arbitrary constant to ensure equality 
along r = 1 for ct < 0 ~ 7t. 

We now take the particular value ~t =(1/2)n (the hemispherical cap), and the 
coefficients here can be simplified for [2.11] to give 

Rp = _ lyr2,p~(cosO)+ . I 1 .r2n+iP2n+l(cosO ) 
- , - o (  + )( + ) 

for r < 1. This can be summed using the techniques outlined by Dorrepaal et al. The level 
curves for p in the azimuthal plane are sketched in figure 2, together with the streamline 
~, = 0. The flow is taken to be from fight to left, and the dotted line represents the 
separation streamline ~ = 0; 0 is the centre of  the hemisphere. There is an absolute 
maximum for the pressure at M. Because of  the sharp edge, there is also a square root 
singularity with Rp oc (r - 1) -I/2 close to the rim of the cap, which leads to a concentlration 
of'equi-pressure lines near there. With the pressure at infinity taken to be zero, the line 
were p = 0 also intersects the hemisphere at L. Again, the presence of  the extremum, as 
indicated by S at the point r ~ 0.67, 0 -- 0, is seen to be within the separated region, and 
the fact that S is a saddle point is confirmed. 
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Figure 2. 

3. G E N E R A L  D E S C R I P T I O N  

For the general situation we consider the flow past a bluff body with a sufficiently 
smooth geometry close to the rear stagnation point, as represented in figure 3. The 
governing equations are written in the form 

Rpp = upp + p -~up - p -2u + U~z, 

R p z  = WO. 0 Off p - I wp + Wzz, [3.1] 

up + p - lu + w, = 0; 

/ \  z 

Figure 3. 
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u and v represent the radial and axial velocities. The axisymmetric nature of the flow 
necessarily leads to pp--0 for all points on the axis where p --0. 

At the rear stagnation point 0, the equation of the surface can be expressed in the form 
z = - ~ p 2 +  0(p4) for some constant u, and close to 0 we can write 

~/ ---- . ~¢ p2 {g2  q" 0hY, p 2 "1" . ~ g  3 -I- (higher order terms)} [3.2] 

where ~ and • are constants; this representation ensures that ~ is zero on the surface 
to 0(p 4), and because there is an inflow towards 0, ~ < 0. Substitution of [3.2] into [3.1] 
shows that Rp~ equals 4z~ at 0, which is negative. The sign of a indicates the concavity 
of the surface through 0, and so the sign of  Rp2 is independent of the shape of the body. 

Further, A is also a stagnation point, and the free streamline ~ --- 0 passes through A, 
so that we can write 

= ~p2{z I +/~p2 + ~z2  + (higher order terms)} [3.31 

close to A where zl --- z - c with OA = c; ~ is a positive constant. When (3.3) is substituted 
into (3.1) it follows that Rp~ equals 4~f(4/] + ~ )  at A, which is certainly positive for/~, 

> 0. Now the restriction /~ > 0 is certainly satisfied when the dividing streamline is 
concave at A as shown in figure 3. To understand the role of ~ ,  it is seen that, if we can 
approximate ~ --0 near A by an ellipse in the p, z-plane with semi-axes of length a, b 
respectively, then we can utilise the fact that the stream function 

exactly represents the rotational flow within the spheroid to justify taking ~ > 0. 
In practise, this is a reasonable condition, and is satisfied in the particular problems 

considered; nevertheless, it is most likely extraneous, and would be removed if a more 
global argument were possible. 

Also, we see that pp~v::-p~, is equal to 2p2p~' on p - - 0  when 
p =po(z)+p2p2(z)+O(p4). Because p(p,z)  is harmonic it follows that 4p2+p~'=0; 
therefore 

1 tt2 ^ 
(pp 'zz-v2=),-o = - < u ,  

and the extremum is always a saddle-point. 
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